Nonlinear equation for anomalous diffusion: Unified power-law and stretched exponential exact solution
نویسندگان
چکیده
منابع مشابه
Topological exact soliton solution of the power law KdV equation
This paper obtains the exact 1-soliton solution of the perturbed Korteweg-de Vries equation with power law nonlinearity. The topological soliton solutions are obtained. The solitary wave ansatz is used to carry out this integration. The domain restrictions are identified in the process and the parameter constraints are also obtained. It has been proved that topological solitons exist only when ...
متن کاملGalerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines
In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
متن کاملAnomalous diffusion: exact solution of the generalized Langevin equation for harmonically bounded particle.
We study the effect of a disordered or fractal environment in the irreversible dynamics of a harmonic oscillator. Starting from a generalized Langevin equation and using Laplace analysis, we derive exact expressions for the mean values, variances, and velocity autocorrelation function of the particle in terms of generalized Mittag-Leffler functions. The long-time behaviors of these quantities a...
متن کاملExact solutions for the nonlinear Schrödinger equation with power law nonlinearity
Abstract: In this paper, the nonlinear Schrödinger equation with power law nonlinearity is studied. The first integral method, the Riccati sub-ODE method are efficient methods to construct the exact solutions of nonlinear partial differential equations.By means of these methods, the periodic and solitary wave solutions of the nonlinear Schrödinger equation with power law nonlinearity are obtained.
متن کاملAnomalous diffusion associated with nonlinear fractional derivative fokker-planck-like equation: exact time-dependent solutions
We consider the d=1 nonlinear Fokker-Planck-like equation with fractional derivatives ( partial differential/ partial differentialt)P(x,t)=D( partial differential(gamma)/ partial differentialx(gamma))[P(x,t)](nu). Exact time-dependent solutions are found for nu=(2-gamma)/(1+gamma)(-infinity<gamma</=2). By considering the long-distance asymptotic behavior of these solutions, a connection is esta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2001
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.63.030101